
Matrix Multiplication in 8085

Semester Project
for

B.Tech. (Computer Science & Engineering)

by
Praneeth A S (UG20110023)

&
Rohit Yeravothula (UG201110039)

Project Guide: Dr. K R Chowdhary
Head of Department, Computer Science, IIT Jodhpur

Indian Institute of Technology Rajasthan
Jodhpur, Rajasthan 342001, India

November 21, 2013

1

Matrix Multiplication in 8085

Abstract

Two matrices can only be multiplied if their orders are of the form
m × n and n × p where m,n, p ∈ Z+. In this project we intend to
mulitply matrices of order 1×n & n× 1.Later on, we may implement
for general orders.

1 Introduction

Multiplying two matrices of order m × n and n × p where m,n, p ∈ Z+

is an O(n3) where n is the maximum of m,n, p. The project seeks to im-
plement matrix multiplication for smaller order matrices on an Intel 8085
Microprocessor. As you compile the program step by step using GNUSim
8085 Microprocessor you could visualize each row of the product matrix being
filled.

As there is no direct multiplication operation available in 8085 Instruc-
tions, we intend to multiply numbers through repeated addition method using
a loop.

In order to traverse through a row in Matrix 1 & a column in Matrix 2,
we first load the starting address of row and column in stack and HL pair
respectively. For traversing through row and column we swap the values in
HL register pair and top of stack and increment them. We call multiplication
sub-routine as and when we require multiplication of 2 numbers.

Outline The remainder of this report is organized as follows. Section 2
gives account of the implementation details, through flow-charts, diagrams,
algorithms, etc. Our new and exciting results are described in Section 5.
Finally, Section 7 gives the conclusions.

2 Implementation

Algorithm for Matrix Multipication

for (int i = 0 ; i < rowNo ; i++){

for (int j = 0 ; j < colNo ; j++){

for (int k = 0 ; k < p ; k++){

2

result[i][j] = result[i][j] + first[c][k]*second[k][d];

}

}

}

Algorithm for Multiplication

int number1, number2;

while(number2 != 0){

number1 = number1 + number2;

number2--;

}

Matrix Multiplication Algorithm for 8085 for 1× n & n× 1

Load HL pair with Address of 1st row and 1st column of Matrix1

Load Stack with Address of 1st row and 1st column of Matrix2

MVI E, 00H

Method : Load value in HL memory location in A register

Load value of stack in B register

Call multiply subroutine to multiply two numbers

ADD E

STA E

INX H

XCHG

INX H

JMP Method

Store the value of E in specified memory Location

Matrix Multiplication Algorithm for 8085 for 2× 2 & 2× 2

Load C with 2

Load D with 2

Method1: DCR C

Method: Multiply row 1 vector with column 1 vector using algo defined above

DCR D

if D != 0:

if C != 0: Load HL pair with add. of Matrix1[1][1]

Call Method

if C == 0: Load HL pair with add. of Matrix2[2][1]

3

Call Method

if D == 0:

Load HL pair with add. of Matrix1[2][1]

MVI D,002H

if C == 0: HLT

if C!= 0 : Call Method1

3 FlowCharts

Figure 1: Multiplication of 2 numbers
Figure 2: Mutliplying row vector
with column vector

4

Figure 3: Matrix Multiplication

4 Coding

Code for multiplication

; code for multiplication of

; two numbers by repeated

; addition

; two numbers to be multiplied

; are stored in 0002H and

; 0003H,

; output is stored in 0004H

MOV B,0002H

MOV C,0003H

MVI A,00H

LOOP: ADD B

DCR C

JNZ LOOP

STA 0004H

Multiplying row vector
with column vector

LXI H, 8500H

PUSH 8508H

Method: MOV M, A

XCHG

MOV M,B

CALL MUL

STA 8516H

INX H

XCHG

INX H

JMP Method

Matrix Multiplication

MVI C, 002H

MVI D, 002H

5

Method2: DCR C

Method3: CALL MRC

DCR D

JNZ Method4

Method4: ORI C, 00H

JNZ Method5

Method5: LXI H, 8500H

JMP Method3

ORI C, 00H

JZ Method6: LXI H, 8508H

JMP Method3

ORI D, 00H

JZ Method7:

Method7: INX H, 8508H

MVI D, 002H

ORI C, 00H

JNZ Method3

ORI C, 00H

JZ Method8

Method8: HLT

Final Code

MVI C, 00

LXI H, 8500

LOOP2: LXI D, 8600

CALL MUL

MOV B,A

INX H

INX D

INX D

CALL MUL

ADD B

CALL STORE

DCX H

DCX D

CALL MUL

MOV B,A

INX H

INX D

INX D

ADD B

CALL STORE

MOV A,C

CPI 04

JZ LOOP1

INX H

JMP LOOP2

LOOP1: HLT

MUL: LDAX D

MOV D,A

MOV H,M

DCR H

JZ LOOP3

LOOP4: ADD D

DCR H

JNZ LOOP4

LOOP3: MVI H,85

MVI D,86

RET

STORE: MVI B,87

STAX B

INR C

RET

5 Results

We have successfully computed Matrix multiplication of orders 1×n & n×1
and 2× 2 & 2× 2 and stored them in memory locations.

6

6 Problems

Provided we had 4 more registers it would have easier to generalized matrix
multiplication for m × n & n × p. The need for extra registers could have
been overcome by the use of stack but there is a problem. After pushing the
values in the stack, if we wish to access them in any order it is not possible.
Moreover, if we pop the values of stack , it would alter HL register pair values
which we do not wish to do so.

7 Conclusions

At present we have been successively in computing matrices of order 1 × n
& n× 1 and 2× 2 & 2× 2.

References

[1] Microprocessor Architecture, Programming, and Applications with the
8085 - S Gaonkar

[2] 8080/8085 Assembly Language Programming Manual Copyright c©1977,
1978 Intel Corporation

[3] http://en.wikipedia.org/wiki/Matrix multiplication

7

