
Students Journal of AI, IIT, Jodhpur, Vol. 1, No. 1, 2014
Tracking solutions of sudoku puzzles

AI for Solving Sudoku Puzzles
Praneeth A S, UG2011100231

Abstract
Sudoku is a game popular in Japan. It requires filling of an n×n square grid with 1 to n values such that every row, column
has numbers from 1 to n. THe entire square is divided into n sub-regions of dimension =

√
n. This paper aims at providing

various methods of solvinfg sudoku puzzles using artificial intelligence techniques.

Keywords
AI, Sudoku Solving, Games

1Department of Computer Science & Engineering, Indian Institute of Technology, Jodhpur, India

Contents

1 Introduction 1

Introduction 1

2 Objective 1

3 Motivation 1

4 Theory 1

5 Algorithms 1
5.1 Guessing at random . . . . . . . . . . . . . . . . . . . . . . 1
5.2 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . 1
5.3 Backtracking Search . . . . . . . . . . . . . . . . . . . . . . 2

Forward Checking • Minimum Remaining Values • Hill Climbing
• Random Restart

5.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 3
Some Definitions • Implementation

5.5 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . 3
Some Definitions • Implementation

6 Applications 4

7 Conclusion and Results 4

Acknowledgments 4

References 4

1. Introduction
Sudoku is a popular number game in Japan. This game
involves a 9×9 square grid in which the values from 1 to 9 are
filled into the squares. The puzzle setter provides a partially
completed grid, which typically has a unique solution. The
sqaures should be filled such that every row has a number from
1 to 9, every column has a number from 1 to 9. Additionally,
this square is divided into 9 sub-regions of dimension 3×3.
Even these sub-regions should have numbers from 1 to 9.

2. Objective
This paper evaluates various techniques for solving Sudoku
puzzles by a machine. We would be learning sudoku puzzles

of various dimensions which would be solved using artificial
intelligence techniques like backtracking, genetic algorithms,
simulated annealing etc.,

3. Motivation
This project is a challenging project. Though solving sudoku
puzzles would be easier for smaller dimensions but becomes
increasingly difficult for more larger dimensions of n. Ordi-
nary methods of brute force would become completely inef-
ficient for solving. So it is essential to optimize methods for
solving this problem in order to save on time and space.

4. Theory
Sudoku is a kind of constraint satisfaction problem (CSP); a
problem whose solution requires a set of variables and which
imposes constraints on the values they can take.

5. Algorithms

5.1 Guessing at random
This procedure is a naive one where we guess a number be-
tween 1 & n and place it in the square we wish to. If it doesnot
violate any constraints then we place it in the square, else we
don’t. This method is a worst one as it would take alot of time
for solving a veru huge grid. It is even guaranteed to find a
valid solution - given enough time - because it will eventually
try all of them. The catch of course is the time required. In the
worst case it requires infinite time to find a correct solution,
because only then is it guaranteed that every possible solution
will be generated.

5.2 Exhaustive Search
The next simplest way to search for a valid solution to a
puzzle is to enumerate (that is, generate all possible instances
of) the unconstrained grids. After generating each new grid
you check to see whether it’s a valid solution, and if so you’re
done. This algorithm is guaranteed to find a solution since it
will check all grids if need be, but in the worst case the only



AI for Solving Sudoku Puzzles — 2/4

Figure 1. Standard 9×9 Sudoku grid

solution is the last grid it checks. We call this an exhaustive
search since it exhausts all the possibilities (and anyone who
tries to do it by hand).

5.3 Backtracking Search
Pick the first empty square and assign 1 to that square. If the
one conflicts with another value, then change it to a two. Keep
doing this until a value that does not conflict is found. Once
a value that does not conflict has been found, pick another
square and repeat this process. If a square has no possible val-
ues, then return to the previously assigned square and change
its value. This method of search is known as a backtracking
search.It is guaranteed to find a solution if there is one,simply
because it will eventually try every possible number in every
possible location. This algorithm is very effective for size
two puzzles. Unfortunately for size three puzzles there are
nine possibilities for each square. This means that there are
roughly 981−n possible states that might need to be searched,
where n is number of given values. Obviously this version of
backtracking search is not going to work for size 3 puzzles.
Fortunately there are several means by which this algorithm
can be improved: constraint propagation, forward checking
and choosing most constrained value first.

5.3.1 Forward Checking
The first improvement on backtracking search is forward
checking. Notice that the old version of backtracking search
had to place a value and then check for conflicts. Instead it
is easier to just maintain a list of which possible values each
square can possibly have given the other numbers that have
been assigned. Then when the values are being assigned to
that square, only consider the ones that do not directly con-
flict with the other already placed numbers. For a size three
puzzle forward checks can be stored in a nine by nine by nine
boolean array. Basically each square has its own array of
nine boolean values corresponding to each of the numbers
that could possibly go in that square. If the third value in the
array is set to false, then that square cannot contain a three.
Maintaining these lists is simple. Whenever a new value x
is assigned is assigned, go to every other square in the same

row, column and box and mark false in its array for value x.
Storing this information can be used in two ways. First, it can
be used to verify that no value is ever assigned that directly
conflicts with another assigned value. Second, if the array for
any square contains all false values, then there is no possible
value for that square and the most recently assigned value is
wrong. Using forward checking the backtracking search can
now solve size three puzzles.

5.3.2 Minimum Remaining Values
Another method for improving the backtracking search is the
minimum remaining values heuristic. The minimum remain-
ing values heuristic is used to alter the order in which squares
are guessed in order to reduce the number of branches at each
level. Basically instead of choosing the first empty square, the
square with the least number of possible values is chosen. By
choosing the square with only two possible values instead of
three the search tree only branches in two directions instead of
three. Basically the search tree is reduced in size by a factor
of two thirds.

5.3.3 Hill Climbing
Given the size of the state space it is logical to use a search
method with a heuristic function to avoid searching less promis-
ing sections of the state space. One type algorithm that meets
thiscriteria is hill climbing. Hill climbing algorithms work by
generating a list of successors of the current state, then choos-
ing the one with the lowest heuristic value. In order to apply
hill climbing to Sudoku three things must be defined: the start
state, the successor function and the heuristic function. One
way to go about this is to fill in each box so that it contains
the numbers one to n2 and allow successors to be generated
by switching values within the same box. Instead of filling in
the boxes with the numbers one to n2 the rows will be filled,
but the idea is the same. Let the start state be defined as the
initially puzzle with all of the empty spaces filled in such that
each row contains the numbers one to n2. Using this as a start
state, the successor function can be defined as swapping any
two nonfixed values in the same row. The heuristic can simply
be the sum of the number of conflicts that appear within each



AI for Solving Sudoku Puzzles — 3/4

Figure 2. Backtrack search for 2×2 Sudoku grid

column and each box. Since each row has exactly the numbers
one to n2 there are no conflicts within the rows. Hill climbing
can successfully solve size two puzzles occasionally.

5.3.4 Random Restart
The general hill climbing algorithm described above is incom-
plete. This is because it can get stuck in a local minimum.
One simple way to fix this is to randomly restart the algorithm
whenever it goes a while without improving the heuristic
value. This is known as random restart hill climbing. This
version of hill climbing does not quite suffice to solve the
puzzle. The problem comes from the completely random way
in which the variables are filled in. One technique for dealing
with this is to switch certain values after the initial random
placement. Known as postswapping this technique attempts
to minimize the number of values that conflict with the values
given in the original puzzle. Another possible solution is to
use the constraint propagation algorithm. Applying constraint
propagation before filling in any random values prevents some
values from being randomly guessed incorrectly. Also, con-
straint propagation can be applied in between the assignments
of each row to make sure that the future rows agree better with
the rows that have already been assigned. This method allows
most puzzles of size three to be solved.

5.4 Genetic Algorithm
A genetic algorithm is a search technique used in order in
computing to find exact or approximate solutions to optimiza-
tion and search problems. Genetic algorithms are categorized
as global search heuristics. Genetic algorithms are a particular
class of evolutionary algorithms that use techniques inspired
by evolutionary biology such as inheritance, mutation, selec-
tion and crossover.

5.4.1 Some Definitions
1. Gene - an empty cell in the original Sudoku puzzle,

filled with some legal value .

2. Individual/Chromosome - an object representing a po-
tential solution of the Sudoku problem. An individual

actually consists of a sequence of genes, each of which
has a value within it.

3. Population - a set of individuals.

4. Fitness function - a function from the space of individu-
als to R which represents the number of contradictions.

5.4.2 Implementation
In our implementation, each individual represents a solution
of the Sudoku puzzle, where each gene represents a cell which
isn’t fixed. First we’ve created a random population of Sudoku
solutions– where each individual consists only with randomly
selected legal values - the value is within legal range and has
no contradiction with fixed cells. Once created, the fitness
value of each member of the population is computed and the
population is sorted in ascending order of fitness - when zero
is the best value and represents a solution to the problem.
While there is no individual of value zero (and therefore the
problem isn’t solved yet), we perform selection of half of the
best-valued individuals in our population, in order for them to
create the next generation of solutions. We choose randomly
which two individuals mate, and create a new generation using
crossover and mutation. Given two parents we choose one
random point of crossover and create two children which are
a combination of their parents’ genes according to crossover
point. A mutation is also performed randomly, on a recently
created individual, on a random gene, by transforming the
gene’s value into a different but legal value. The act of muta-
tion helps the algorithm in avoiding local minimum solutions.
However it isn’t perfect, and as a result the algorithm should
be restrained with a maximal number of generations created.
This cycle of life is being performed until a solution is found
or until the algorithm has reached its limit regarding to number
of generations created.

5.5 Simulated Annealing
Simulated annealing (SA) is a generic probabilistic meta-
heuristic for the global optimization problem of applied math-
ematics, namely locating a good approximation to the global



AI for Solving Sudoku Puzzles — 4/4

minimum of a given function in a large search space. . . each
step of the SA algorithm replaces the current solution by a
random nearby solution, chosen with a probability... The al-
lowance for uphill moves saves the method from becoming
stuck at local minima.

5.5.1 Some Definitions
1. Approximated solution - a Sudoku board, where its

non-fixed cells are filled with randomly selected legal
values.

2. A neighbor solution - a solution S
′

which is close to the
given solution S, differs from it only by one parameter
( in our implementation - only by a fitness value of one
cell)

3. An improving value - a legal value which is given to a
cell and improves its fitness value.

4. A downhill move - moving to an approximated solution
which has a lower fitness value than the currant solution.
(In our implementation - a value of a cell is changed to
a different legal value, but with a worse fitness value).

5.5.2 Implementation
Given a Sudoku board we create an approximated solution
– S. Once created, the fitness value of S is being calculated
alongside with the fitness value of each of the cells. While the
solution’s fitness isn’t zero we search for the next best step,
an approximated solution which has a better fitness value. In
order to achieve this goal, we try to find an improving value
to the worst cell (the one with the worst fitness value) in the
board, this by testing all possible legal values. If no legal value
improves the cell’s fitness, it is marked as tested, and we con-
tinue to next worst-valued cell. In case we haven’t been able
to find an improving value for any of the non fixed cells the al-
gorithms outputs failure. In case that several improving values
are found – the value which improves the board’s fitness the
most is selected. Once an improving value has been reached,
a neighbor solution S’ is created – in which the improving
value is placed instead of the prior value in that cell. At this
stage our algorithm selects whether to move to the neighbor
state or allow a downhill move. This choice is being made in
a probabilistic way, in order to avoid local minima and expand
the search space. The probability of selecting a downhill move
lowers as the search advances, due to the thought that as the
search advances we are closer to solving the problem. After
performing the probabilistic choice and moving to some other
approximated solution, the loop of trying to find a neighbor
solution with better fitness value is being performed, until a
solution is found. This loop continues until a solution to the
problem is found.

6. Applications
The algorithms used in this project could be used in those
places where there are certain constraints & there is huge

certain search space of values from which goal is to be found
out. As the above algorithm runs good for considerable value
of n it can be used for seraching for larger search trees.

7. Conclusion and Results
Although the Sudoku problem is a difficult constraint satis-
faction problem, it is not completely invulnerable to search
methods. Puzzles of size three or less can be solved very
quickly and consistently. The backtracking search can consis-
tently solve size three Sudoku puzzles after considering fewer
than 200 states. Considering that there are
6,670,903,752,021,072,936,960 valid Sudoku puzzles, search-
ing only 200 of them to find a solution is excellent. Random
restart hill climbing is also successful on easy puzzles of size
three, but is unable to solve more difficult puzzles.

Acknowledgments
I sincerely thank my professor Dr. K R Chowdhary Sir who
has helped me a lot for teaching the above methods which
helped me in devicing the algotihm for sudoku solving.

[1][2]

References
[1] Stuart Russell and Peter Norvig. Artificial intelligence:

A modern approach. 3rd edition:317–330, December 11,
2009.

[2] M. Tim Jones. Artificial intelligence, a systems approach.
1st edition, December 26, 2008.


